

GP42-300 GP42-400

Wind Turbine Generator System Specification

Shanghai Ghrepower Green Energy Co., Ltd

Modification record

Version	Edition in Detail	Author	Edited Date
V0.01	Initial document creation, summarizing system component specifications	Jiang zuoping	2019/03/13
V0.02	Modified document format, add some content	Jiang zuoping	2019/08/30
V1.00	Modified document format, add some content	Jiang zuoping	2020/07/30
V1.01		Liu Jinpeng	2024/12/10

Content

1. WIND TURBINE GENERATOR SYSTEM OVERVIEW	4
1.1 System Characteristic	4
1.2 Wind Turbine Brief Introduction	4
1.2.1 Overall appearance of WTG	
1.2.2 Wind rotor	
1.2.3 Nacelle	
1.2.4 Three-blade independent pitch mechanism	
1.2.5 Generator & braking system	
1.2.6 Yawing system	
1.2.8 Tower	
2. SYSTEM TECHNICAL PARAMETER	
2.1 Wind turbine generator system parameter	8
2.2 Wind turbine component parameter	
2.3 Environment request	
2.4 Grid connection request	
3. SYSTEM CONFIGURATION	11
3.1 System connection diagram	11
3.2 System electrical drawing	11
4. PERFORMANCE	13
4.1 GP42-300 power curve	13
4.2 GP42-300 annual electric production	14
4.3 GP42-400 power curve	
4.4 GP42-400 annual electric production	
4.5 Thrust coefficient	17
5. ELECTRONIC CONTROL SYSTEM	18
5.1 On-grid controller	19
5.2 On-grid converter	19
6. TOWER & FOUNDATION	20
6.1 Overall appearance diagram(37m)	21
6.2 Reference foundation(37m)	21
6.3 Overall appearance diagram (49m)	
6.4 Reference foundation(49m)	24
7. WIND TURBINE TRANSPORTATION	25
8. HOISTING REQUEST	26
9 SCADA REMOTE MONITORING	27

1. Wind Turbine Generator System Overview

1.1 System Characteristic

- ➤ Low-speed permanent magnet generator, direct drive gearless transmission design.
- Active pitch control technology ensures output power stability in strong wind.
- > Multiple safety protection for individual pitch, mechanical, electromagnetic brakes and active yawing.
- > Equipped with low-speed magnet generator with full-power converter, suitable for multinational grid -tie system.
- ➤ Direct 400V to grid and connect to the nearby load distribution system, which is self-supply, self-consumption and sufficient electricity connected to grid, for efficient energy transmission.
- SCADA remote monitoring system is the feature of real-time monitoring, report statistics, fault diagnosis and integrated operation & maintenance management.
- > Suitable for industrial park, seaport, oil-field, mine, village, expressway service area, etc.

1.2 Wind Turbine Brief Introduction

1.2.1 Overall appearance of WTG

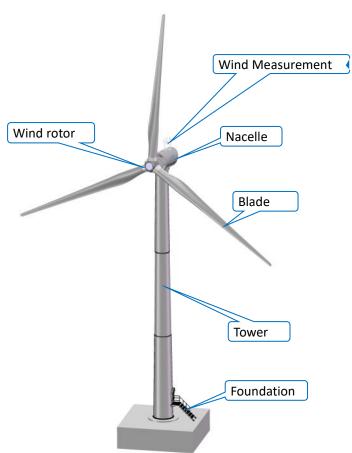
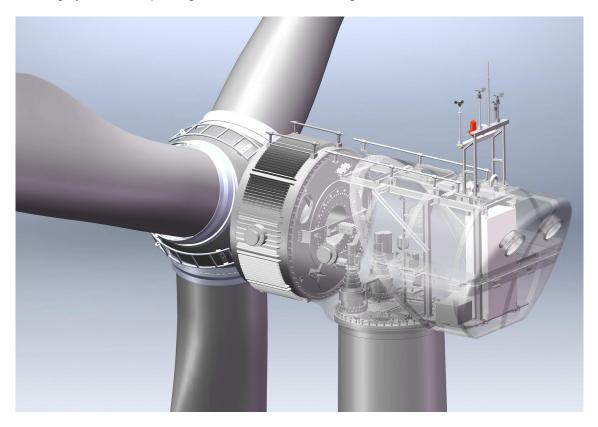


Figure 1 GP42 wind turbine generator system outline diagram

1.2.2 Wind rotor

The wind rotor is used to convert the kinetic energy of the air into the mechanical energy of wind rotor. The wind turbine adopts a three-blade, upwind type which is actively adjusted through



pitch mechanism. The blade material uses reinforced fiber glass.

1.2.3 Nacelle

The nacelle is connected to generator and tower, which contains yawing transmission system, damper control system, wind turbine control system, sensors, wind measurement system, aviation

warning system, staff passage, etc., as shown in the figure,

1.2.4 Three-blade independent pitch mechanism

Pitch of WTG adjusts the windward angle of blades, and its main functions are power adjustment and rotation speed control. It mainly includes hub, pitch reducer, drive motor, pitch controller, angle speed detection device, etc. The hub adopts a spherical structure, which has good castability and high strength, as shown in the left picture below:

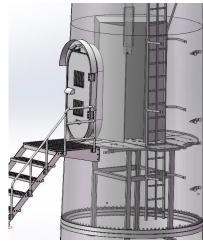
1.2.5 Generator & braking system

The generator converts the mechanical kinetic energy of wind rotor into electrical energy. It is composed of stator, rotor, brake disc, braking system and detection device. The main shaft of WTG is braked to realize blade braking, which is composed of brake disc and hydraulic braking system, as shown on the right above. As shown in the figure.

1.2.6 Yawing system

Wind turbine adopts active yawing to direct wind and consists of three yaws drive devices, yaw angle detection device, twisting detection device and hydraulic brake. Yaw braking is accomplished by a yaw reduction motor, which uses an electromagnetic brake.

1.2.7 Lubrication system


The lubrication system of WTG consists of automatic lubrication and manual lubrication. The yaw pivotal bearing and the front and rear main shaft lubrication of the generator are independent automatic lubrication systems. The three independent pitch bearings are independent lubrication systems and each bearing position is equipped with waste oil collection bottle.

1.2.8 Tower

Tower mainly plays the role of supporting nacelle, generator and wind rotor. It consists of tower itself, ladder, lighting and ladder safety protection devices. Each floor of tower is equipped with a platform for installation and rest, etc.

2. System technical parameter

2.1 Wind turbine generator system parameter

Manufacturer	Shanghai Ghrepower Green Er	nergy Co., Ltd.				
Country of origin	China					
Parameter	Specs					
System model	GP42-300	GP42-400				
Device model	FD42-300	FD42-400				
Design standard	IEC61400-1					
Design class	SWT Class IIIA					
Туре	Permanent magnet direct dri axis,	ive, three blades, horizontal				
Design class	20 years					
Rotor diameter	42m					
Hub height	51m	51m				
Tower type	Tubular column	Tubular column				
Performance						
Power regulation	Individual pitch control					
Rated power	300kW	400kW				
Swept area	4.61 m ² /kW	3.46 m ² /kW				
Rated rotation speed	35rpm	36rpm				
Max rotation speed	41rpm					
Cut-in wind speed	3m/s	3m/s				
Rated wind speed	11m/s 12m/s					
Cut-out wind speed	20m/s(10min), 24m/s(10s)	20m/s(10min), 24m/s(10s)				
Survival wind speed	52.5m/s					

2.2 Wind turbine component parameter

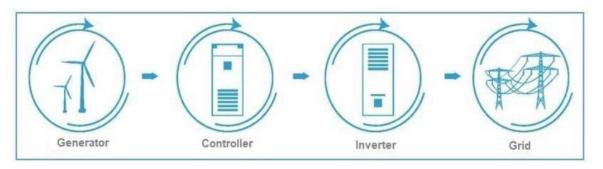
Weight	
Blade	3*1.3t
Nacelle & generator	28t@37m /38t@49m
Tower	42t@49m

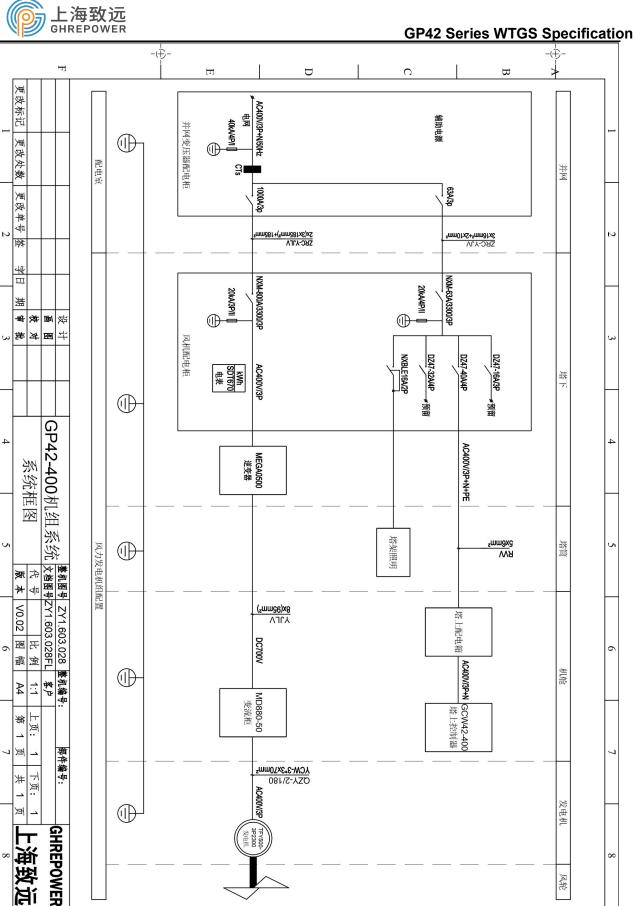
Brake system	
Aerodynamic brake	Active pitch control
Mechanical brake	Mechanical main-shaft brake
Electromagnetic brake	Electronic dump load control
Yawing & untwisting	
Yawing mode	Electric
Untwisting mode	Auto untwisting
Angle of twisting	±1080°(±3 circles)
Control system	
Control system	Industrial PLC controller
Inverter type	Full-power inverter
Monitoring	SCADA Cube 3.0
Generator	
Generator type	Permanent magnet
Drive mode	Direct box (gearless box)
Rated voltage	400Vac
Insulation grade	F class
Blade	
Blade material	Fiber Reinforced Plastics (FRP)
Blade length	20 m
Blade quantity	3
Tower	•
Surface treatment	Anti-rust painting
Height	49m
Other	•
Noise level	<58dBA (@60m)
Device position	Converter is placed into the bottom of tower.
1	Others are placed inside of nacelle.
	Lightning receptors for blade tip connected to earth through loop.
Lightening protection	Anemometer and wind vane with separate lightning
	receptors.

2.3 Environment request

Environment temperature						
Working environment	-20°C ~ +50 °C					
Storage environment	-30°C ~ +60 °C					
Relative humidity	≤95 %					
Elevation	≤2000m, > 2000m, derating operation					
Generator protection class	IP54、ISO 12944-2 C5					
Other environment request	Conform to standard of EC 60721-2-1					
Ground resistance	≤ 4Ω					

2.4 Grid connection request


Grid connection request					
On-grid voltage range	400V±15 %				
Allowable frequency range	47.5 Hz ~52.5 Hz				
Allowable voltage unbalance	≤3%				
Interruption duration	≤7 days				
Grid connection access standards	Distribution grid connection series GB standard				
Auxiliary power supply					
Normal operation	≤6kW, 3P5L				
Standby power	≤1.8kW				
PCS standby consumption	≤0.6kW				


3. System configuration

3.1 System connection diagram

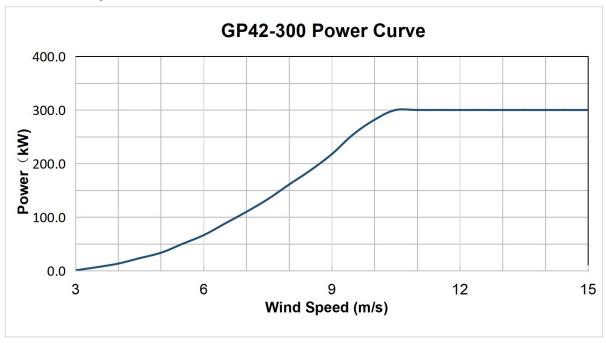
Wind turbine generator system is composed of wind turbine generator, on-grid controller and on-grid inverter. (see the following photo)

3.2 System electrical drawing

D

С

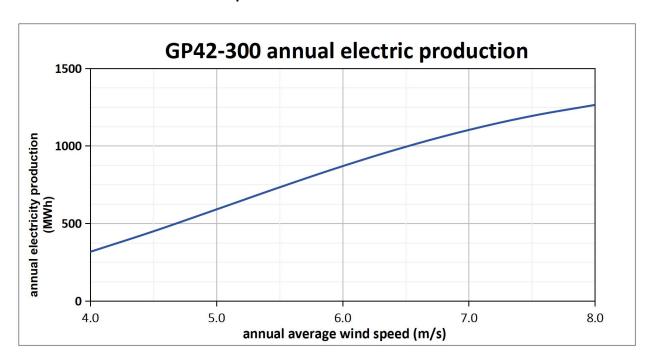
В


Update: 12-10-2024

П

4. Performance

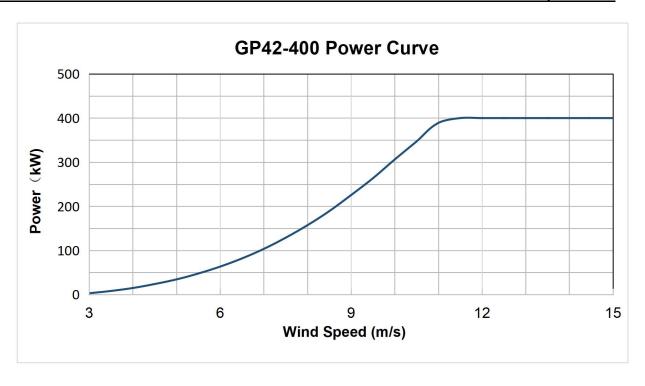
4.1 **GP42-300** power curve


wind speed (m/s)	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5
power(kW)	1.2	6.7	13.4	23.3	33.6	50.0	66.4	88.1
wind speed (m/s)	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5
power(kW)	109.9	133.4	160.8	187.3	217.5	254.2	281.6	300.0
wind speed (m/s)	11.0	11.5	12.0	12.5	13.0	14.0	15.0	
power(kW)	300.0	300.0	300.0	300.0	300.0	300.0	300.0	

Usage instruction for power curve:

- 1. Data source:data source of power curve listed on the table is the result of calculation based on the theoretical aerodynamic efficiency data of blades and efficiency of each component of wind turbine generator system, which is equivalent to the data under standard air density (1.225g/L).
- 2. Reference standard: IEC 61400-12-1, all data sources are 10-minute averages.
- Application concern: when evaluating the site, power curve needs to be converted according to the actual air density of the site location. For related conversion methods, please refer to IEC 61400-12-1.

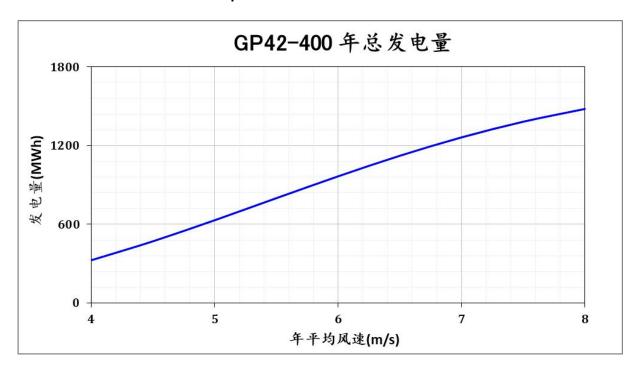
4.2 GP42-300 annual electric production


annual average wind speed (m/s)	4.0	4.5	5.0	5.5	6.0	6.5	7.0
annual electricity production (MWh)	317	449	591	733	870	994	1103
annual electricity production (10MWh)	31.7	44.9	59.1	73.3	87.0	99.4	110.3
equivalent hours (h)	1058	1498	1968	2443	2899	3314	3677

Usage instructions for electricity generation:

- 1. Data source: the electricity generation is a theoretical value calculated according to calculation method of IEC 61400-12-1 based on the above power curve.
- 2. Reference standard: IEC 61400-12-1, assuming that the wind distribution is Rayleigh distribution.
- 3. Application concerns: actual electricity generation of WTG is related to factors such as site temperature, altitude, wind distribution, nearby obstacles, over-limit environment, and grid transmission conditions.

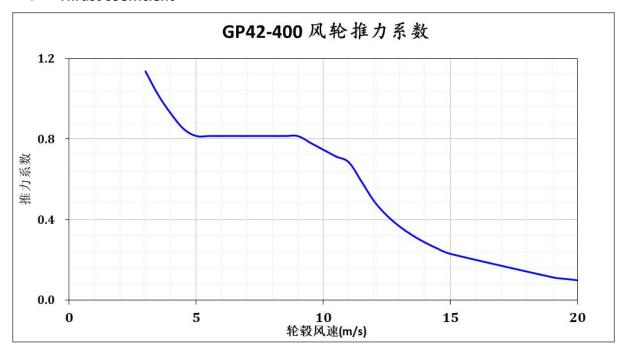
4.3 **GP42-400** power curve


wind speed (m/s)	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5
power(kW)	1.3	6.7	15.1	25.5	37.7	52.9	72.5	98.5
wind speed (m/s)	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5
power(kW)	122.8	152.6	182.7	217.1	249.4	286.3	317.8	351.2
wind speed (m/s)	11.0	11.5	12.0	12.5	13.0	14.0	15.0	
power(kW)	373.4	387.5	397.5	400.0	400.0	400.0	400.0	

Usage instructions for power curve:

- 1. Data source: data source of power curve listed on the table is the result of calculation based on the theoretical aerodynamic efficiency data of the blades and the efficiency of each component, that is equivalent to the data under standard air density (1.225g/L).
- 2. Reference standard: IEC 61400-12-1, all data sources are 10-minute averages.
- 3. Application concern: when evaluating site, power curve needs to be converted according to the actual air density at the site. For relevant conversion methods, please refer to IEC 61400-12-1.

4.4 GP42-400 annual electric production


annual average wind	4.0	4.5	5.0	5.5	6.0	6.5	7.0
annual electricity production (MWh)	326	471	631	799	965	1122	1262
annual electricity production	32.6	47.1	63.1	79.9	96.5	112.2	126.2
equivalent hours (h)	816	1177	1578	1998	2413	2804	3154

Usage instructions for electricity generation production:

- 1. Data source: electricity generation production is a theoretical value calculated according to the calculation method of IEC 61400-12-1 based on the above power curve.
- 2. Reference standard: IEC 61400-12-1, assuming that the wind distribution is Rayleigh distribution.
- Application concerns: actual power generation production of WTG is related to factors such as site temperature, altitude, wind distribution, nearby obstacles, over-limit environment, and grid transmission conditions.

4.5 Thrust coefficient

Wind speed (m/s)	Thrust coefficient	Wind speed (m/s)	Thrust coefficient	Wind speed (m/s)	Thrust coefficient	Wind speed (m/s)	Thrust coefficient
3.0	1.1367	6.5	0.8149	10.0	0.7467	13.5	0.3212
3.5	1.0196	7.0	0.8150	10.5	0.7132	14.0	0.2851
4.0	0.9266	7.5	0.8150	11.0	0.6847	14.5	0.2547
4.5	0.8503	8.0	0.8150	11.5	0.5892	15.0	0.2288
5.0	0.8149	8.5	0.8150	12.0	0.4903	19.0	0.1127
5.5	0.8150	9.0	0.8149	12.5	0.4196	19.5	0.1046
6.0	0.8149	9.5	0.7807	13.0	0.3649	20.0	0.0973

Thrust coefficient illustration:

- 1. Data source: thrust coefficient is a theoretical value obtained by Bladed software based on WTG data simulation.
- 2. Reference standard: IEC61400-1, thrust coefficient is the steady-state operating value of WTG.
- 3.Application concerns: actual thrust coefficient is related to factors such as s instantaneous wind speed, instantaneous rotational speed, pitch angle, blade surface roughness, and environment.

5. Electronic control system

Wind turbine generator control system includes the core control unit of WTG, pitch drive control, yaw drive control, environmental monitoring, human-computer interaction, and power conversion, that realizes automatic operation control of WTG and maximizes wind energy. Utilization and processing and recording of various events have the following characteristics,

- 1 Hardware stability & reliability: PLC-based distributed control system, using mature CANopen and EtherCAT buses for system connection.
- 2 software maturity & completeness: standard wind turbine code library and control strategy with superior performance in electricity generation efficiency improvement and load control.
- Pitch control flexibility: use different control strategies under different working conditions such as light wind start-up section, rated wind speed section, strong wind control section, wind speed over-limit, etc. to maximize the wind energy utilization and safe operation of WTG.
- 4 Wind MPPT : combined with real-time air density and dynamically adjust the torque control parameters to ensure MPPT of wind energy Cp.
- 5 Intelligent yawing strategy: intelligent untwisting and wind-direction strategies balance wind-direction accuracy and action frequency to improve wind-catching ability.
- 6 Comprehensive protection: complete wind turbine protection system with multi-level protection strategies to maximize utilization.
- 7 Load optimization control: flexibility control, tower resonance zone vibration isolation, strong wind speed suppression, pitch rate flexible adjustment, etc.
- 8 Intelligent monitoring & diagnosis: complete status code, protection logic and user rights management to maximize safety of WTG.
- 9 Efficient operation & maintenance troubleshooting: abundant operation, failure, operation logs and failure recording records enable efficient operation & maintenance troubleshooting.
- 10 Abundant environmental monitoring: WTG has various monitoring functions such as wind speed, wind direction, air pressure, temperature, humidity, vibration, etc.
- 11 Convenient monitoring & debugging: real-time data monitoring and display of WTG, and LoT operation screen realizes the simultaneous uploading of operating data to the cloud.
- 12 Simple power grid connection: using a converter that meets the grid standards, which can be directly connected to the low-voltage 400V distribution network.

5.1 On-grid controller

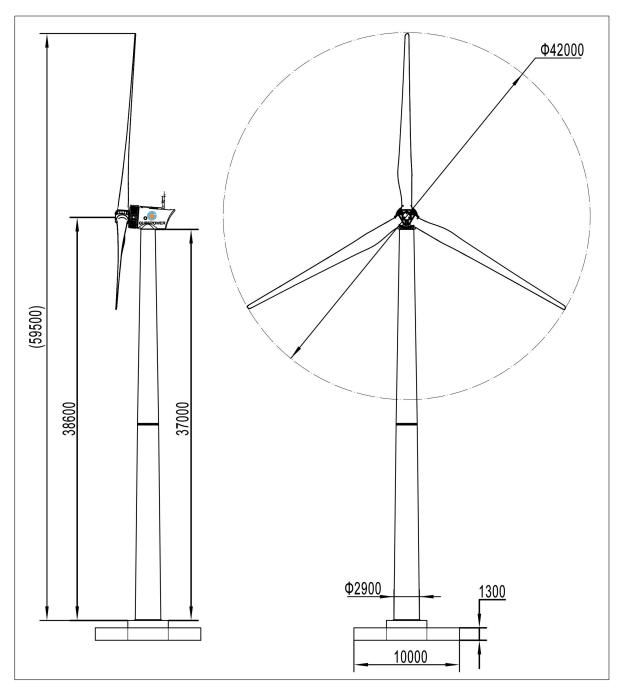
Control parameter				
Master controller	Industry PLC controller			
Yawing speed	0.55 °/s			
Yawing accuracy	≤3.2°			
Way of pitch	Three-blade independent pitch			
Pitch speed	≥8°/s			
Pitch accuracy	≤0.2°			
Pitch backup power	Super capacitor			
Display & Communication				
Display panel	LCD/ touch screen			
Communication interface	RS485、RJ45 internet access			

5.2 On-grid converter

GP42-300	GP42-400			
3 phase 200~460Vac				
600∼720Vdc				
Built-in control and dump-load resistors				
Network side parameter				
300kW	400kW			
Rated grid voltage 400Vac±15% 3 phase 3 lines				
Rated working frequency 50/60Hz ± 5%				
Power factor (PF) >0.99 (0.85L~0.85C adjustable)				
≥97%				
Total current harmor	nics <5%, each time			
Overvoltage, undervoltage, overfrequency, underfrequency, unbalance protection, etc.				
Other grid-tie functions Low voltage ride through, islanding protections				
	3 phase 200~460Vac 600~720Vdc Built-in control and du 300kW 400Vac±15% 3 phase 50/60Hz ± 5% >0.99 (0.85L~0.85C ac ≥97% Total current harmor <3% Overvoltage, undervoor underfrequency, unbace			

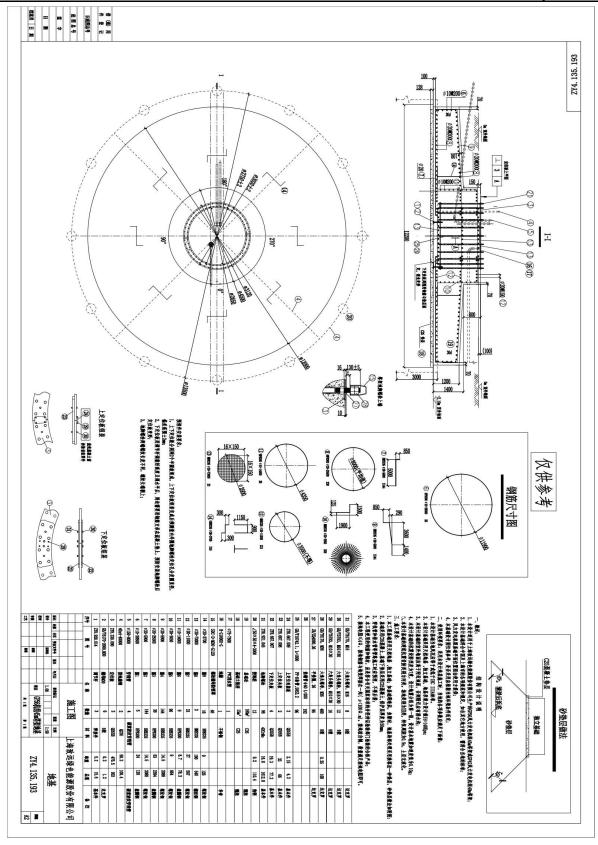
Version: ZY1.603.052GS-EN(V1.01) 19/24 Update: 12-10-2024

6. Tower & Foundation


Tower model	FD42-300	FD42-400		
Height	37m	49m		
Section	2	3		
Thickness	10mm/12mm/14mm 10mm/12mm/14m			
Weight	28t	38t		
Flange				
diameter	1620mm(upper) / 2900mm(bottom)			
Surface				
treatment	Painting			
Base reference value	φ 10mx1.3m	φ 11.5mx1.4m		

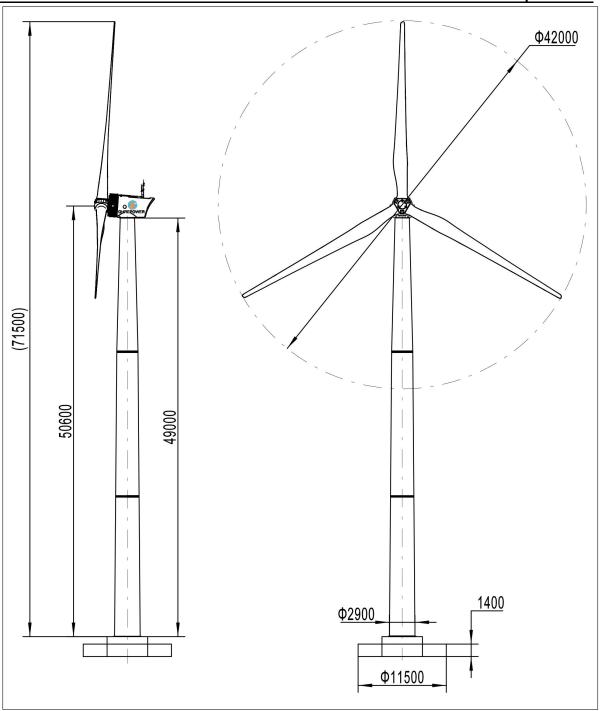
Foundation construction needs to go through start-up procedures, bring in machine tools and materials, excavation and leveling of the foundation pit, excavation of cable trenches and masonry manholes, pre-embedding of ground rods and cushion formwork and pouring (C25), installation of foundation sections (crane 25 tons), the production and binding of embedded parts, formwork cutting and supporting, foundation pit pouring (C35), and foundation maintenance will take at least 20 days.

6.1 Overall appearance diagram (37m)

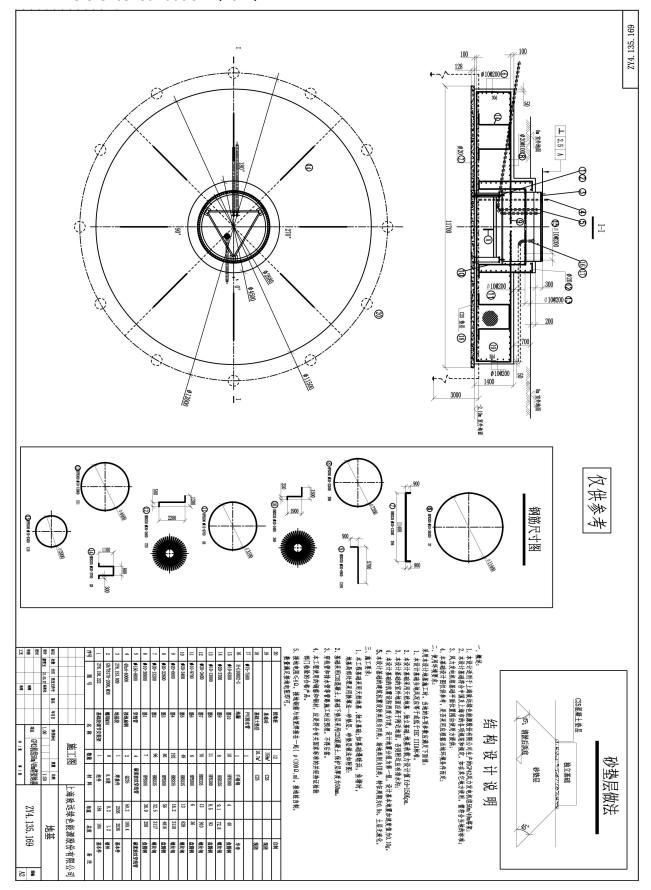

Upper foundation load

Load case	Tower Mxy	Tower Mz [kNm]	Tower Fxy [kN]	Tower Fz [kN]	Safety factor
Normal run load case	1656	173	53	-527	1.0
Ultimate load case	9257.9	452.3	245	-569.1	1.1

Note: The above loads all include load safety factors, please see relevant documents for detailed data.


6.2 Reference foundation (37m)

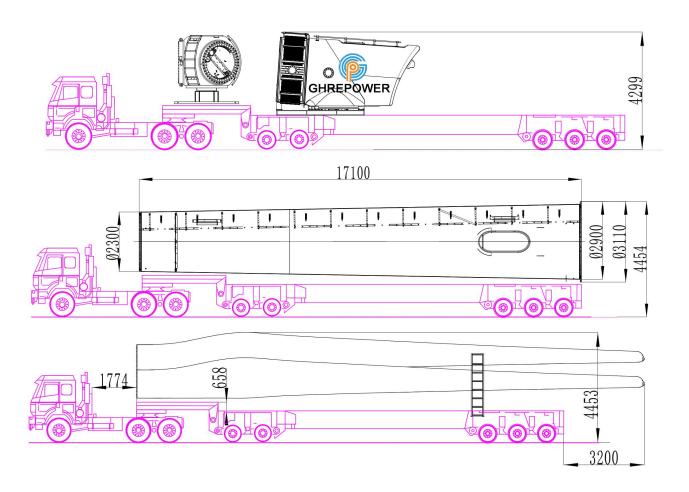
6.3 Overall appearance diagram (49m)


Upper foundation load

Load case	Tower Mxy [kNm]	Tower Mz [kNm]	Tower Fxy [kN]	Tower Fz [kN]	Safety factor
Normal run load case	2302	166	54	-627	1.0
Ultimate load case	10778	-74	263.4	-850	1.35

Note: The above loads all include load safety factors, please see relevant documents for detailed data.

6.4 Reference foundation (49m)



7. Wind turbine transportation

The main components of WTGS are listed and the loading diagram as follows:

No.	Item	Weight (t)	Dimension (m)	Vehicle	Time
1	Ground cage & related accessories	2.5	bulk packaging	Ordinary vehicle	1
2	Nacelle & converter	22	5.0m*2.8m*3.2m	17.5m	1
3	Hub	3.0	1.9m*1.9m*2.5m	platform lorry	
4	Blade	4.0	20.3m*2.6m*2.8m	17.5m platform lorry	1
5	Each section of tower (small parts assembly)	8~16	18.4* \(\phi \) 2.9	17.5m platform lorry	2

8. Hoisting request

In order to ensure the hoisting time, tower hoisting and wind rotor assembly are carried out simultaneously. The requirements for the site are very strict. It is necessary to ensure that there is space for placement and installation of components. The flat area of the site should be wider to facilitate the layout of hoisting installation. The tower needs to be placed in a flat area 20 meters long and 10 meters wide, and the blades need to be placed in a flat area 50 meters long and 40 meters wide for assembly of the wind wheel.

The road needs to ensure the passage of 17.5-meter flatbed vehicles. The turning radius is greater than 20m. The geology must not be soft, otherwise it needs to be paved with sand and gravel.

The list of main tool requirements for each stage of hoisting is as follows:

No.	Name	Specs	Qty	Time	Function
1	Crane	75T	1 pcs	2 days	unloading & blade assembly
2	Crane	260T	1 pcs	2 days	Tower & wind rotor assembly


Update: 2024-12-10

9. SCADA remote monitoring

Remote monitoring system CUBE3.0 with system functions & features:

- > Data transmission: data connection and interaction can be carried out through wired/wireless networks and access method is flexible and convenient.
- Real-time monitoring: log on the web page anytime & anywhere to observe and analyze real-time operation status.
- > Data logging: record various operation information, meteorological, grid data, electricity generation and other types of data.
- Report analysis: statistics of each monitoring quantity and fault records can be made by day, month and year and reports can be generated.
- Failure alarm: failure information can be notified to operation and maintenance personnel in a timely manner by pre-classifying various types of failures.
- Operation & maintenance management: record each operation & maintenance information and provide operation and maintenance status reminders according to maintenance requirements.
- > Safety and reliability: the server is built on a third-party cloud platform, which the network service is safe and reliable.

Add: No. 58, Tongju Rd, Songjiang District, Shanghai City, China

Tele: 0086-21-37832332

Fax: 0086-21-37832356

E-mail: info@ghrepower.com

Web: www.ghrepower.com